Heterogeneous Gossip

نویسندگان

  • Davide Frey
  • Rachid Guerraoui
  • Anne-Marie Kermarrec
  • Boris Koldehofe
  • Martin Mogensen
  • Maxime Monod
  • Vivien Quéma
چکیده

Gossip-based information dissemination protocols are considered easy to deploy, scalable and resilient to network dynamics. Loadbalancing is inherent in these protocols as the dissemination work is evenly spread among all nodes. Yet, large-scale distributed systems are usually heterogeneous with respect to network capabilities such as bandwidth. In practice, a blind load-balancing strategy might significantly hamper the performance of the gossip dissemination. This paper presents HEAP, HEterogeneity-Aware gossip Protocol, where nodes dynamically adapt their contribution to the gossip dissemination according to their bandwidth capabilities. Using a continuous, itself gossip-based, approximation of relative bandwidth capabilities, HEAP dynamically leverages the most capable nodes by increasing their fanout, while decreasing by the same proportion that of less capable nodes. HEAP preserves the simple and proactive (churn adaptation) nature of gossip, while significantly improving its effectiveness. We extensively evaluate HEAP in the context of a video streaming application on a testbed of 270 PlanetLab nodes. Our results show that HEAP significantly improves the quality of the streaming over standard homogeneous gossip protocols, especially when the stream rate is close to the average available bandwidth.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Task Assignment Based on Gossip with Guaranteed Performance on Heterogeneous Networks ⋆

In this paper we propose a novel distributed algorithm for task assignment on heterogeneous networks. We consider a set of tasks with heterogeneous cost to be assigned to a set of nodes with heterogeneous execution speed and interconnected by a network with unknown topology represented by an undirected graph. Our objective is to minimize the execution time of the set of tasks by the networked s...

متن کامل

Gossip based Asynchronous and Randomized Distributed Task Assignment with Guaranteed Performance on Heterogeneous Networks

The main contribution of this paper is a novel distributed algorithm based on asynchronous and randomized local interactions, i.e., gossip based, for task assignment on heterogeneous networks. We consider a set of tasks with heterogeneous cost to be assigned to a set of nodes with heterogeneous execution speed and interconnected by a network with unknown topology represented by an undirected gr...

متن کامل

A Gossip Algorithm for Heterogeneous Multi-Vehicle Routing Problems

In this paper we address the heterogeneous multi-vehicle routing problem by proposing a distributed algorithm based on gossip. We consider the case where a set of tasks arbitrarily distributed in a plane, each with a service cost, have to be served by a set of mobile robots, each with a given movement speed and task execution speed. Our goal is to minimize the maximum execution time of robots.

متن کامل

Gossip Algorithms for Heterogeneous Multi-Vehicle Routing Problems

In this paper we address a class of heterogeneous multi-vehicle task assignment and routing problem. We propose two distributed algorithms based on gossip communication: the first algorithm is based on a local exact optimization and the second is based on a local approximate greedy heuristic. We consider the case where a set of heterogeneous tasks arbitrarily distributed in a plane has to be se...

متن کامل

GGRA: a grouped gossip-based reputation aggregation algorithm

An important issue in P2P networks is the existence of malicious nodes that decreases the performance of such networks. Reputation system in which nodes are ranked based on their behavior, is one of the proposed solutions to detect and isolate malicious (low ranked) nodes. Gossip Trust is an interesting previously proposed algorithm for reputation aggregation in P2P networks based on t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009